

### Antonio M. Moreiras – IX.br

### CGI.br is the Brazilian Internet Stering Committee Multistakeholder Committe - Internet Governance in Brazil

The CGI.br is comprised of members from the government, the corporate sector, the third sector and the academic community, and as such constitutes a unique Internet governance model for the effective participation of society in decisions involving network implementation, management and use. Based on the principles of multilateralism, transparency and democracyl

### **Brasil Internet Exchange**

#### Brazilian Network Information Center nicbr - civil non-profit corporation

- executive arm of CGI.br
- registrobr
- ccTLD '.br' - Brazilian NIR
- security incident response certbr - CSIRTs fostering and coordenation
- cetic br - ICT indicators
  - IPv6 and best practices trainings for ISPs and ASs
- ceptro.br
  - quality measurements on the Internet
    - projects to foster the Internet development in Brazil
  - ixbr
    - Internet Exchanges
- cewebbr - Web related projects
  - W3C<sup>°</sup>
- Brazilian office of W3C (World Wide Web Consortium)

### IX.br numbers:

וחחחח

- > 26 independent Internet Exchanges
- > 1300+ ASs participants, and 2 Tbps of peak traffic at all IXs aggregated

ceptrobr nicbr cgibr

> 940+ ASs, 30 PoPs (PIXs), and 1.5 Tbps at IX.br São Paulo, SP

### IX.br

- 26 Internet Exchanges
- IX.br São Paulo is the biggest:
  - Around 1000 Autonomous Systems
  - Most of them are in the multilateral peering agreement
  - 4 route servers
    - Participants are required to have BGP sessions with all 4, for redundancy

## Route server problems

- Quagga can't deal with more than 1000 BGP sessions (due to the way sockets are implemented with select)
  - We had to separate IPv4 and IPv6 in different processes
  - Performance problems:
    - Quagga showed to be sensible to BGP session oscillations

ceptrobr nicbr cgibr

Quagga can't use more than 1 core (it's one single process)...

### **Bird?**

- Bird stable version 1.4.5 over Linux was not able to scale above 1,000 peers due to SELECT function on code for sockets allocation
- Laboratory tests with Bird version 1.5 over Linux showed to solve this issue, but the code seems to be not mature enough for production

ceptrobr nicbr cgibr

• It's still one single process

## **Adopted solution**

- Multiple BIRD processes, instead of a single one, sharing the load
  - Each process in a different port (and IP)
  - Each process with a different BGP Router ID (and not the same as the public IP)
  - Each process share the same configuration files (for the client sessions)

ստող

- Full mesh between the BIRD processes
- Passive mode
- Linux netfilter does the 'magic' of load sharing

### "Multi BIRD"

ò



սսսմս

# Full mesh between processes

Ó



սսսա

### **Config excerpts**

log syslog all: router id 187.16.217.255; listen bgp port 2002: define myas = 26162; define MyLoIP = 127.0.0.12; protocol device { } protocol kernel { import none; } include "/etc/bird/templates/peers\*.conf"; include "/etc/bird/templates/rspeers\*.conf"; include "/etc/bird/functions/\*.conf"; #iBGP (loopback interface) protocol bgp ibgp p2000 from RSPEERS { neighbor 127.0.0.10 port 2000 as myas; source address MyLoIP; } protocol bgp ibgp\_p2001 from RSPEERS { neighbor 127.0.0.11 port 2001 as myas; source address MyLoIP; } #this peer #protocol bgp ibgp\_p2002 from RSPEERS { neighbor 127.0.0.12 port 2002 as myas; source address MyLoIP; } protocol bgp ibgp p2003 from RSPEERS { neighbor 127.0.0.13 port 2003 as myas; source address MyLoIP; } protocol bgp ibgp\_p2004 from RSPEERS { neighbor 127.0.0.14 port 2004 as myas; source address MyLoIP; } protocol bgp ibgp\_p2005 from RSPEERS { neighbor 127.0.0.15 port 2005 as myas; source address MyLoIP; } protocol bgp ibgp p2006 from RSPEERS { neighbor 127.0.0.16 port 2006 as myas; source address MyLoIP; } protocol bgp ibgp\_p2007 from RSPEERS { neighbor 127.0.0.17 port 2007 as myas; source address MyLoIP; } protocol bgp ibgp\_p2008 from RSPEERS { neighbor 127.0.0.18 port 2008 as myas; source address MyLoIP; } protocol bgp ibgp p2009 from RSPEERS { neighbor 127.0.0.19 port 2009 as myas; source address MyLoIP; }

սոսոս

ceptrobr nicbr cgibr

#peers (clients)
include "/etc/bird/peers/\*.conf";

## **Config excerpts**

ceptrobr nicbr cgibr

տորող

# as22548.conf - last change: 2016-11-01 02:15:02

```
# asn,description,mark,filters
# 22548,V4_AS22548,22548,28571 61580
```

```
# ipv4,asn,description,maximum_prefix,password,passive,shutdown
# 187.16.217.2,22548,V4 AS22548,100,,True,False
```

```
filter bgp_in_as22548
{
    if (DenyATMv4BlockPrefix()) then reject;
```

```
bgp_in(22548);
    bgp_community.add((26162,22548));
    accept;
}
filter bgp_out_as22548
{
    # filter as28571 - USP - mark 28571
   if (26162,28571) ~ bgp_community then reject;
    # filter as61580 - OpenCDN.nic.br - mark 61580
    if (26162,61580) ~ bgp_community then reject;
    accept;
}
protocol bgp as22548 187 16 217 2 from PEERS {
    description "as22548 ATM IPv4 - V4_AS22548";
    neighbor 187.16.217.2 as 22548;
    passive on;
    import limit 100 action restart;
    import filter bgp_in_as22548;
    export filter bgp_out_as22548;
```

െ

}

### **Config excerpts**

# port redirecting - load sharing -A PREROUTING -p tcp -i em2.2012 --dport 179 -m state --state NEW -m statistic --mode nth --every 10 --packet 0 -j DNAT -to-destination 187.16.216.254:2000 -A PREROUTING -p tcp -i em2.2012 --dport 179 -m state --state NEW -m statistic --mode nth --every 9 --packet 0 -j DNAT -to-destination 187.16.216.254:2001 -A PREROUTING -p tcp -i em2.2012 --dport 179 -m state --state NEW -m statistic --mode nth --every 8 --packet 0 -j DNAT -to-destination 187.16.216.254:2002 -A PREROUTING -p tcp -i em2.2012 --dport 179 -m state --state NEW -m statistic --mode nth --every 7 --packet 0 -j DNAT -to-destination 187.16.216.254:2003 -A PREROUTING -p tcp -i em2.2012 --dport 179 -m state --state NEW -m statistic --mode nth --every 6 --packet 0 -j DNAT -to-destination 187.16.216.254:2004 -A PREROUTING -p tcp -i em2.2012 --dport 179 -m state --state NEW -m statistic --mode nth --every 5 --packet 0 -i DNAT -to-destination 187.16.216.254:2005 -A PREROUTING -p tcp -i em2.2012 --dport 179 -m state --state NEW -m statistic --mode nth --every 4 --packet 0 -i DNAT -to-destination 187.16.216.254:2006 -A PREROUTING -p tcp -i em2.2012 --dport 179 -m state --state NEW -m statistic --mode nth --every 3 --packet 0 -j DNAT -to-destination 187.16.216.254:2007 -A PREROUTING -p tcp -i em2.2012 --dport 179 -m state --state NEW -m statistic --mode nth --every 2 --packet 0 -j DNAT -to-destination 187.16.216.254:2008 -A PREROUTING -p tcp -i em2.2012 --dport 179 -m state --state NEW -m statistic --mode nth --every 1 --packet 0 -j DNAT -to-destination 187.16.216.254:2009

ceptrobr nicbr cgibr

սոսոս

### Results

- It worked very well!
- Smaller memory footprint than quagga (~ 4Gbytes)
- Better distribution of the load between the multiple cores/processors

ceptrobr nicbr cgibr

• Smaller load, better performance

### Results

 $\mathbf{O}$ 



າມມາມົນ

### Issues and workarounds

- Troubleshooting: in which process is each client?
  - We wrote some scripts to manage the multiple birds as a single router
- MD5 works only with active mode
  - We choosed one single bird process to configure all clients with MD5 in active mode
- Some (very few) clients have problems with passive mode in RSs
  - We configured them in the same process that we used for MD5 issue

## Next steps with our RSs

- Substitute the IPv6 RS, that is still quagga, for the same solution with multiple bird processes
- Implement communities for filters between clients
- Implement mitigation of path hiding
- 2 route servers instead of 4, with external load balancers distributing the load between redundant servers

- Substitute Cisco for another solution
  - Multiple quagga?
  - GoBGP?

### Obrigado! Dzięki! Thanks! www.ix.br



